Challenges in closing the loop for special metals

Christina Meskers
MMTA's International Minor Metals Conference

Umicore Precious Metals Refining
London 26 - 28 April 2010
Agenda

I Introduction

II Why should we bother?

III Challenges in closing the loop
I Introduction
Today, our company is...

- … one of the world’s biggest suppliers of automotive catalysts for passenger cars

- … is the world’s largest recycler of precious metals from old mobile phones, laptops, electronic scrap or spent catalyst material

- … a world leader in the production of key materials for rechargeable batteries used in laptops and mobile phones

- Umicore’s germanium substrates for high-efficiency solar cells are used in the bulk of the satellites launched today
Umicore today: global footprint

<table>
<thead>
<tr>
<th></th>
<th>1999</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenues</td>
<td>€865m</td>
<td>€1,723.2m</td>
</tr>
<tr>
<td>Number of sites</td>
<td>32</td>
<td>85</td>
</tr>
<tr>
<td>Workforce</td>
<td>8,065</td>
<td>13,720</td>
</tr>
</tbody>
</table>
Where can Umicore play a role in Cleantech?

Creating value by reducing the use of rare and valuable materials

Less is More

Energy Solutions
Materials for energy storage and sustainable energy production

Recycling Solutions
Addressing resource scarcity and emissions by closing the materials loop

Environmental Solutions
Technologies to mitigate environmental impacts
Recycling solutions in Cleantech

<table>
<thead>
<tr>
<th>Product</th>
<th>Product</th>
<th>Recycling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germanium substrates (Space & CPV)</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Automotive catalysts (PGM’s)</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>ITO / AZO targets</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Selenium, Indium, Tellurium, Gallium*</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Rechargeable batteries</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Electronics (contacts, solders…)</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Platinum components and catalysts for glass industry</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Jewelry precious metal alloys</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Ag</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

* unrefined Ga product
Growth investments

Energy solutions > Rechargeable batteries

Li-Ion cathode materials
- Capacity & capability expansion in Cheonan, South Korea
- Completed

Li-Ion cathode precursors & materials
- Production plant in Jiangmen, China
- Completed
Growth investments
Energy solutions > Photovoltaics

Germanium substrates for high-efficiency cells
- Production plant in Quapaw, US
- Plant constructed, under qualification

Rotary sputtering targets for thin film cells
- Development lab in Balzers, Liechtenstein and Providence, US

Recycling service for thin film cell production waste
- Recycling plant in Hoboken, Belgium
Growth investments

Recycling solutions

Jewellery and electroplating materials
- Recycling and production facility in Foshan, China
- Completed

Battery recycling
- Pilot line in Hoboken, Belgium
- Initial investment of €25m approved
<table>
<thead>
<tr>
<th>Metal</th>
<th>Capacity</th>
<th>Quality</th>
<th>Forms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tellurium</td>
<td>150 t/y</td>
<td>2N5</td>
<td>powder, ingots</td>
</tr>
<tr>
<td>Indium</td>
<td>50 t/y</td>
<td>4N, 4N8</td>
<td>ingots, shots, shells</td>
</tr>
<tr>
<td>Selenium</td>
<td>600 t/y</td>
<td>2N5, 3N, 4N5, 5N, 5N+</td>
<td>powder, shots</td>
</tr>
</tbody>
</table>
Best available technology focussed on secondary precious metal materials

Feed: 350,000 mt complex PM materials

Recovered metal value (2007):
2,600 M$ PM, other metals 400 M$

PM recovery yield > 95%

Highest environmental standards:
ISO 14001 & 9001, OSHAS 18001

Minimizing waste < 5%

> 1 billion € investment
II Why should we bother?
Are we behaving just like this caterpillar?

The very hungry caterpillar by Eric Carle
Increase in demand started 2-3 decades ago

Mined in the last 30 years compared to mined since 1900 in %

Challenges in closing the loop for special metals
MMTA - London 26-28 April 2010
Competing for the same metals

<table>
<thead>
<tr>
<th></th>
<th>In</th>
<th>Ga</th>
<th>Se</th>
<th>Te</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photovoltaics</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Medical/dentistry</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Magnets</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Other alloys</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Metallurgical</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Glass, ceramics, pigments</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Batteries</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Catalysts</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Nuclear</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Solder</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Electronic</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>Opto-electric</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Grease, lubrication</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>
Drivers for recycling

Policy - Legislation
Can support recycling even if volume and environment driver are not present. The long term and strategic aspects are society driven.

Value
There is money to be made from recycling. For example: gold jewellery, silverware, automotive catalysts, …

Long term sustainability
Resource conservation
Secure & long-term access to resources

Environment
There is a threat to the environment, health or safety. For example: hydrocarbons, asbestos, …

Volume
The volume is so big it cannot be “left on the street”. For example: household waste, construction waste, cars, …
III Challenges in closing the loop

a primary supply
b ITO recycling
c CIGS recycling
Challenges in closing the loop for special metals

Life cycle

End-of-Life → Residues

New scrap → Raw materials production

from concentrates, ores

Metal & compounds → Residues

Raw materials production → from industrial materials

Use

Product manufacture

Use → Residues

End-of-Life

Residues

Natural resources

New scrap → Residues
Reality

Product manufacture

Use

End-of-Life

Raw materials production

New scrap

Metal & compounds

Natural resources

Reality

Residues

Use

End-of-Life

Residues
Coupled production affects primary supply

- Increased demand can only be met if demand for carrier metals rises accordingly.
- This will place an absolute cap on total availability in terms of reserves and primary supply.

C. Hagelüken, CEM Meskers: Complex life cycles of precious and special metals in Linkages of Sustainability. T Graedel and E van der Voet (eds), 2010
Challenges in closing the loop for special metals 21

MMTA - London 26-28 April 2010
Challenges in primary supply

1. Mining
 - Production of special metals is coupled.
 - Losses in tailings

2. Smelting
 - Losses in parent metal, slag, other residues.
 - Smelter has to be equipped for effective special metal recovery OR
 - By-products of smelter are sent to specialized treatment facility for recovery of precious & special metals ⇒ Umicore

3. Refining
 - Logistics and refining processes will affect availability of high purity minor metals
Indium Tin Oxide recycling
Indium Tin Oxide

Production from concentrates, ores

Natural resources

by-products

Umicore Thin Film Products

ITO target

PV or LCD display manufacturer

spent target

End-of-Life

Use

Lost in other material cycles

Residues

Challenges in closing the loop for special metals

MMTA - London 26-28 April 2010
The main objective of pre-processing is to effectively and efficiently separate the goods to be recycled into fractions that can enter existing and sustainable mainstream recovery processes.
Challenges in the ITO cycle

- Indium is supplied via processing of by-products of the non-ferrous industry
- Indium is used for the production of ITO targets
- Spent targets are recycled into targets

1. Manufacturer
 - Losses of indium in other waste or residue streams
 - Recycling of targets works well because of their value

2. End-of-Life product recycling
 - Small products with LCD display are very difficult to collect
 - EU WEEE directive pushes recycling of LCD display
 - Dismantling & separation technology is recently developed, off the shelf not possible due to Hg in backlights
 - Umicore’s role in recycling In-containing fractions under investigation
CIGS recycling
CIGS

Production from concentrates, ores

Natural resources

Production waste

Umicore Precious Metals Refining

by-products

Copper, indium, gallium, selenium

PV manufacturer

End-of-Life

CIGS module in use

Residues

under investigation

PV manufacturer

End-of-Life

CIGS module in use
CIGS module in use

Production from concentrates, ores

Natural resources

by-products

Production waste

under investigation

PV manufacturer

Copper, indium, gallium, selenium

Residues

End-of-Life

Umicore Precious Metals Refining

PV manufacturer

Residues

CIGS module in use
CIGS production waste recycling

CIGS production scrap → umicore → Cu, In, Ga, Se
Challenges in the CIGS cycle

Production wastes
- Umicore has closed the cycle for production wastes from sputtering and evaporation chambers
- Cu, In, Ga and Se are recovered for use in the PV or other industries

End-of-Life product recycling
- End-of-life products are hardly available
 - CIGS is a new technology and product life time is long
- Recycling driver is likely to be “volume” combined with a societal need
- Technologies for End of Life and recycling are under development
- Appropriate business models need to be developed too
Closing remarks

- Vision burden ⇒ opportunity
 ⇒ *new business models to increase collection*

- Attitude waste management ⇒ resource management
 ⇒ *comprehensive collection plus stop of dubious “waste” exports*

- Objective focus on mass ⇒ focus on quality and specific substances
 ⇒ *system approach and prioritisation*

- Practice traditional business ⇒ high-tech recycling
 ⇒ *recycling is a clean future technology so adapt structures accordingly*

For future technologies (PV, EV/HEV, FC, …) recycling strategies need to be developed at an early stage!
Thank you

Contact: Christina Meskers
Kris Van den Broeck

Address: Adolf Greinerstraat 14
2660 Hoboken
Belgium

e-mail: christina.meskers@eu.umicore.com
kris.vandenbroeck@umicore.com

Website: www.preciousmetals.umicore.com